44=15(t)+1/2*9.8*(t^2)

Simple and best practice solution for 44=15(t)+1/2*9.8*(t^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 44=15(t)+1/2*9.8*(t^2) equation:



44=15(t)+1/2*9.8(t^2)
We move all terms to the left:
44-(15(t)+1/2*9.8(t^2))=0
Domain of the equation: 2*9.8t^2)!=0
t!=0/1
t!=0
t∈R
We get rid of parentheses
-15t-1/2*9.8t^2+44=0
We multiply all the terms by the denominator
-15t*2*9.8t^2+44*2*9.8t^2-1=0
Wy multiply elements
-270t^2*9+792t*9-1=0
Wy multiply elements
-2430t^2+7128t-1=0
a = -2430; b = 7128; c = -1;
Δ = b2-4ac
Δ = 71282-4·(-2430)·(-1)
Δ = 50798664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{50798664}=\sqrt{324*156786}=\sqrt{324}*\sqrt{156786}=18\sqrt{156786}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7128)-18\sqrt{156786}}{2*-2430}=\frac{-7128-18\sqrt{156786}}{-4860} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7128)+18\sqrt{156786}}{2*-2430}=\frac{-7128+18\sqrt{156786}}{-4860} $

See similar equations:

| 4x2+25=20 | | 3(8+3m)=4(m+6) | | 2x^2+162= | | 2(x-3)+2=2(2x-4) | | -6-6p=-6(p+1) | | 3w+7/3=19 | | 4.9t^2+15t-44=0 | | x/6=159 | | -3/5m-9=-6 | | 2+2x+32=x+23 | | 22x-55=22x-55 | | 3(4x+7)=-35+20 | | 5(k-2)-6=5k-(4k-1) | | 2x-5(5x+5)=44 | | 2-x=-x+2 | | 9x6=-5x(10-3) | | x+5/2+x+2/7=1 | | 4x+4x-9=29 | | 5x+3=43-4×+× | | 7x-12=9x-4 | | +1/2x=48 | | 0=12–2p–(2p) | | 5/8x+2=57/16 | | 0=12p-5-(120+3p) | | 1/3x−5/6=−2/3 | | 11=4-3(2x+5)+6x | | 13x−56=−23 | | -3y=-49 | | 12–2p–(2p)=0 | | -3y=49 | | 10-3/4x=16 | | 2(5v+3)–4(7v+1)=-88 |

Equations solver categories